Learning to program a real high-speed
internet router.

Zhen Yi Pan

Abstract.

This paper is a summary of the work I did during the 2020 DIMACS REU program. This
includes information about the P4 programming language and the Barefoot SDE. Information
about the P4 programming language includes implementing exercises that exhibit network-level
use cases of programmable switches through P4 programs. Information about the Barefoot SDE
includes experiences with a real hardware device that can process data at 6.4 Tbit/s.

1. INTRODUCTION.

Internet traffic goes through a series of devices called routers. Routers are high-speed devices,
meant to redirect packets of data quickly from one place to another. In traditional networks, the
router’s functions are implemented at the hardware level. This gives a performance boost to the
speed of the router; however, this limits the device in terms of the actions that can be executed.
Software-defined networking is defined by the decoupling of control and forwarding planes in
the network. This separation enables the flexibility for the switch to exploit open communication
protocols like OpenFlow. This allows operators to manage the entire network and its devices
with code consistently, regardless of the underlying
hardware, which may be from multiple vendors. My
role is to understand the specific details of
programmable switches, explore this emerging field
in computer networking, and ultimately to work
towards the larger research effort intended to define
mechanisms and policies that carve out university

typedef bit<9> egressSpec 1;
typedef bit<48> machAddr t;

typedef bit«<32> ipdaddr t;

network resources to various users by programming header ethernet_t {

routers appropriately. macAddr_t dsthAddr;
macAddr t srchddr;

2. BACKGROUND. bit<1l6> etherType;

P4 is a programming language for controlling how »

packets are processed by the forwarding plane in

networking devices, such as routers and switches. header myTunnel t {

Through the duration of the summer research, 2
different Github tutorials [3, 4] were used to learn
different networking protocols and the P4
programming language.

bit<16> proto_id;
bit<le>» dst_id;

Figure 1. Example header section.

2.1 P4 language structure.

The first thing to notice when working through the early exercises is the unique structure of the
language. The code is formatted into very specific sections including the headers, parser,
checksum verification, ingress processing, egress processing, checksum computation, deparser,
and the switch. Within these subsections, there was more formatting. Take the header shown in
Figure 1 for example. At the very top, the figure contains type definitions with a name attached
to a set number of bits. The image also contains example definitions of headers. The ethernet
header is defined as an “ethernet_t,” which contains a destination address and source address
using the predefined type, “macAddr_t.” There is also another field, “etherType,” defined
directly with the number of bits, which in this case is 16. Nonstandard headers can be defined as
well, such as “myTunnel_t” with specified bits defined as needed. These definitions follow a
straightforward structure, which gives the code a neat and clean look. This nice formatting
allows the code to be easily understood and this is consistent throughout the rest of the code
body.

3. P4 EXERCISES.

The Github tutorials [3, 4] explored many important concepts in computer networking,
revealing vast complexities that go into a single program. A network is much more complicated
than simply moving a packet from an arbitrary input port to an arbitrary output port of a router.
There are many intricate aspects of the P4 programs that come together to make a working
network as a whole.

3.1 Tunneling

The first concept is tunneling. Figure 1 presents the custom header, “myTunnel_t.” This can be
used to determine if an incoming packet is of the IPv4 internet protocol or the IPv6 internet
protocol. If the underlying infrastructure does not support IPv6, encapsulation of the IPv6
packet in an IPv4 packet allows the movement of data through such devices.

3.2 Firewall with bloom filters
Another exercise introduced a kind of probabilistic data structure — the bloom filter.

register<bit<BLOOM FILTER BIT WIDTH>»(BLOOM FILTER EWTRIES) bloom filter 1;
register<bit<BLOOM FILTER BIT WIDTH>>»(BLOOM FILTER EWTRIES) bloom filter 2;
bit<32» reg pos _one; bit<32> reg pos two;

bit<l» reg val one; bit<l» reg val fwo;

bit<l» direction;

Figure 2. Example of a bloom filter in the P4 language.

A bloom filter is a data structure that maintains set membership with sublinear space on the
number of items in a streaming setting. In the P4 language, it can be implemented with an array
of registers. Bloom filters are a useful tool for speeding up and simplifying networking protocols.
In the example shown in Figure 2, the bloom filter is used to construct a firewall. Chosen

identifying fields (IPv4 source address, IPv4 destination address, TCP source port, and TCP
destination port) of the packet are hashed using a predefined hash algorithm, and the return
value will act as the index in the bloom filter. The value at the computed index will be set to 1
from the original value, which was 0. This setting of the value in the bloom filter will be
completed when a packet is exiting the router. When another packet enters, the hash of the
same fields (IPv4 source address, IPv4 destination address, TCP source port, and TCP
destination port) will be computed to acquire an index and checked with the existing bloom
filter to determine if the packet should be allowed or dropped. The bloom filter is a probabilistic
data structure, which means there can be false positives, but there can never be false negatives.
In the case of firewalls, the bloom filter may allow some packets that have hashed values
overlapping with existing packets’ hashed values to pass through. The bloom filter will never
allow packets whose hashed values do not overlap with existing hashed packets’ values. For
example, if the hash algorithm computes an index with the value, 0, at the index, then the packet
will not pass through.

table entry = pdinfo_helper.buildTableEntry(
table name="MyIngress.ipwv4 lpm",
match_fields={
“hdr.ipva.dstAddr": (dst_ip addr, 32)
1
action_name="MyIngress.myTunnsl_ingress”,
action_params={
"dst_id": tunnel_id,
7)
ingress_sw.liriteTableEntry(table_entry)

print "Installed ingress tunnel rule on %s" % ingress_sw.name

Figure 3. Python control plane.

3.3 P4 control plane.

The P4 control plane exercise on Github [3] demonstrates how to populate the forwarding
plane’s table using Python. Figure 3 is a snippet of the control plane code taken from the
p4runtime example, which populates the ipv4_lpm table with match fields, action names, and
action parameters.

3.3.1 Explaining the relationship between the forwarding plane and the control
plane.

An important part of the learning process is to understand the relationship between the
forwarding plane and the control plane. The forwarding plane sets up the table and the table
structure, while the control plane populates the table with table entries. An example of the
forwarding plane would be to imagine an empty table with headers, “key,” and “actions.” The
forwarding plane creates rules that say the “key” column of the table will take IPv4 destination
addresses, as an example. It will also create rules that say the “actions” column will take only

one of the three actions (ipv4_exact, drop, NoAction, for example) that were previously defined
by you. These rules set up a contract for the control plane. The control plane must populate the
“key” column of the table with IPv4 addresses, and not IPv6 addresses or MAC addresses.
Similarly, the “actions” column must take either ipv4_ exact, drop, or NoAction. It cannot take
another action like ipv4_lpm, which was not defined in the forwarding plane table. All of the
table information would be stored in a dedicated memory.

In learning P4, the 2 sets of Github tutorial were both exceptional tools to not only learn the P4
language, but also dive into various concepts and complexities of computer networking.

Figure 4. Error message in the install script.

4. INSTALLING THE BAREFOOT SDE.

The Barefoot SDE is the software package used to interact with the Tofino switch hardware. It
can be set up on a virtual machine and run with the tofino-model. Many problems occurred
while setting the SDE up on both the virtual machine and the physical hardware.

4.1 Installation on the virtual machine.

An error occurred in part one of the installation regarding the software dependencies. The
install script had printed an error message no matter the status of the installation. With a
thorough look through the script, one can encounter something rather evil displayed. This is
shown in Figure 4. It is a message stating, “Error installing p4c installer dependencies.” This
may seem reasonable; however, at a closer look, it appears that after
“$SDE/install_p4c_deps.sh” is run, the exit code is stored in “rc” with “rc=$?.” The exit code in
rc is not used again to determine if the error message should be printed. Thus, no matter the
status of “$SDE/install_p4c_deps.sh,” an error message will always print. Evil.

After plowing through the installation errors, a working environment was up on a Ubuntu 18.04
virtual machine. A few test cases were run on the tofino-model. Figure 5, Figure 6, and Figure 7
displays a working example of tna_ counter’s tofino-model, bfshell control plane, and Python
test cases respectively.

zharnite@zharnite-VirtualBox: ~/bf-sde-8.9.2

File Edit View Search Terminal Help
:07-24 23:40:49.422711: :6xd7:-: Key:
:07-24 23:40:49.423703: :0xd7:-: : hdr.ethernet.dst_
addr[47:16] = 6x112233
:07-24 23:40:49.423834: :0xd7:-:< : hdr.ethernet.dst
addr[15:0] = ©x4455
107-24 23:40:49.423977: :0xd7:-: :Execute Default Ac
ion: SwitchIngress.nop
107-24 23:40:49.424074: :0xd7:-: :Action Results:
:07-24 23:40:49.424146: :0xd7:-: :Next Table = --END
OF _PIPELINE--

23:40:49.424253:

:49.427853:
:49.434388:
:49.442057:
:49.447002:
:49.456803:
:49.463934:
:49.472564:
:49.477406: :0xd7:-:<0,0,->: S e 11
:49,.535517: :0xd7:-:<0,0,->:Ingress Deparser H

:07-24 23:40:49.541468: :0xd7:-:<0,0,->:Header hdr.etherne
is valid

:07-24 23:40:49.541530: :0xd7:-:<0,0,->:Header hdr.ipv4 is
valid

:07-24 23:40:49.598911: 1-:1-:<0,0,0>:Wailting for packets to pr

pCess

Reg channel closed. Restart reg connection...

DRU thread terminating..

eg thread termination requested..

\C:07-24 23:42:36.452663: :-:1-:<0,0,0>:Begin packet processing
eg thread calling harlyn_1ld re init

Re-Init link to bf-drivers...

Listen socket created

bind done on port 8001. Listening..

aiting for incoming connections...

Figure 5. Tofino-model on the virtual machine.

File Edit View Search Terminal Help
libpdthrift:
context: fhomefzharnite/bf-sde-8.9.2/install/share/tofinopd/tn
a_counter/pipe/context. json
config: /homefzharnite/bf-sde-8.9.2/installfshare/tofinopd/tna
_counter/pipe/tofino.bin
Pipes in scope [0 1 2 3]
diag:
mavericks diag:
Agent[@]: [home/zharnite/bf-sde-8.9.2f/install/lib/libpltfm mgr.s

non_default port ppgs: @

SAI default initialize: 1
Operational mode set to default: MODEL
bf switchd: initializing dru sim service
bf switchd: library libdru_sim.so loaded
INFO: DRU sim MTI initialized successfully
dru_sim: client socket created
dru_sim: connected on port 80081
dru_sim: listen socket created
dru sim: bind done on port 80082, listening...
dru_sim: waiting for incoming connections...
dru_sim: connection accepted on port 8062
dru_sim: DRU simulator running
Starting PD-API RPC server on port 9096
bf switchd: drivers initialized
Setting core pll ctrl8=cd44cbfe

\
bf switchd: dev_id @& initialized

bf switchd: initialized 1 devices

bf switchd: spawning cli server thread

bf switchd: spawning driver shell

bf switchd: server started - listening on port 9999

AR R AR R AT ETAEARAETRRETRERREERTTRAETRRRT R R T T RR

= WARNING: Authorised Access Only =

AR R AR R AT ETAEARAETRRETRERREERTTRAETRRRT R R T T RR

bfshell= 2020-07-24 23:39:37.108131 BF_BFRT ERROR - tableUsageGet:
340 SwitchIngress.indirect counter Mot supported

2020-07-24 23:39:37.147095 BF_BFRT ERROR - tableDefaultEntryGet:24
7 SwitchIngress.indirect_counter ERROR : Table default entry get n
ot supported

Figure 6. Bfshell control plane on the virtual machine.

File Edit View Search Terminal Help

Received tna_ counter on GetForwarding
sending packet on port 1

Expecting packet on port 2

sending packet on port 1

Packet is expected to get dropped.

Ran 1 test in 4.121s

Ok

test.DirectCounterIteratorTest ... Subscribe attempt #1
Subscribe response received @

Binding with p4 _name tna_counter

Binding with p4 name tna_counter successful!!
Seed used 60951

Received tna counter on GetForwarding

sending packets on port 1

Reading back all the entries

ALl Entries read successfully

Deleting all entries

Ran 1 test in 64.571s

0K
test.DirectCounterTernaryAddNoCounterFieldsTest ... Subscribe attempt
#1

Subscribe response received 8

Binding with p4 name tna_ counter

Binding with p4 name tna_ counter successful!!
Received tna counter on GetForwarding

Testing Ternary Table

Insert table entry

Sending packet on port 1

Expecting packet on port 2

Expecting packet on port 2

Delete table entry

sending packet on port 1

Packet is expected to get dropped.

Ran 1 test in 1.214s

DK
zharnite@zharnite-VirtualBox:~/bf-sde-8.9.25% I

Figure 7. Python test cases running successfully for tna_ counter example.

4.2 Installation on the ONIE switch.

As for the installation on the physical hardware, there still exist bugs in the software and the
tofino-model is only half functioning. The errors included the non-existent linux headers, thrift
dependency compile error, problems with loading and unloading the bf-drivers, a
TThreadedServer exception printing every second on the bfshell control plane of the
tofino-model, a platform error after installing a required driver, and many more, which were
unrecorded.

4.3 Experience with the NYU device.

The NYU Tofino device is another switch that was already set up. Within this machine, there
was a tofino-boilerplate written and ready to be tested. This program sends a packet from the C
language control plane on a separate thread, given 5 input fields. It then receives the previously
sent packet by joining the thread and printing the updated fields to the observer. A running
example of this is presented in Figure 8. The commands were: “./run.sh 11 22 33 44 55.” As seen
from the image, the first field, originally containing 11, was updated to o after being received.
The current goal of the project is to get Rutgers' device to a similar state.

of field_1 i
of field_
of field_ -
of field_4 is:

)
Z
3

fino-boilerplate/CP#

Figure 8. Running the tofino-boilerplate example.

5. DISCUSSION.
Here are some reflections on the work I have done.

5.1 Understanding the forwarding plane and control plane.

In my experience, the hardest part of the Github tutorials [3, 4] was grasping the concept of the
control plane. I could not understand what the purpose of the control plane was and what was
meant by populating the tables. I believed the tables had already existed on the forwarding plane
and the control plane was not needed if the tables were already there. Now that I do understand
the purpose of the control plane, it is hard to explain what I was previously confused about.
Working through the exercises and looking at the Python code, attempting to understand it,
allowed me to grasp the purpose of the two different planes.

5.2 Remembering the Barefoot SDE.

Regarding the virtual machine, it was the most gratifying experience to see a test case being run
and succeeding after hours of debugging during the installation period. I was able to explore the
bfshell and navigate to a Python based control plane of the program. There, I populated the
tables with my custom entries and ran a tailored test case to see if the execution would pass. It
did.

I encountered many problems while installing the SDE on the virtual machine; however, I will
not get into the details in the interest of time and for the sake of my sanity.

6. CONCLUSION.

This project is only at the beginning of its many stages. Setting up the Barefoot SDE is the very
first step to enable cutting-edge computer networking research on the university campus. There
is a long way to go and it looks hopeful going forward. I wish to stay with the team and continue
to contribute to the project in any way possible.

7. ACKNOWLEDGEMENTS.

I want to thank my mentor Srinivas Narayana for guiding me through this entire project and for
being an amazing mentor. I want to thank the NSF grant: OAC-1925482 for providing me with
the funding to do this research. I want to thank our collaborators at NYU (Professor Anirudh
Sivaraman) for letting us use their Tofino device. I also want to thank the 2020 DIMACS REU
program for making this magnificent experience possible. And of course, Professor Kevin
McDonnell and Professor Richard McKenna for writing my letters of recommendation. Thank
you all very much.

8. REFERENCES.

[1] Mckeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., ...
Turner, J. (2008). OpenFlow. ACM SIGCOMM Computer Communication Review, 38(2),
69-74. d0i:10.1145/1355734.1355746

[2] Bosshart, P., Daly, D., Gibb, G., Izzard, M., Mckeown, N., Rexford, J., . . . Walker, D. (2014).
P4. ACM SIGCOMM Computer Communication Review, 44(3), 87-95.
doi:10.1145/2656877.2656890

[3] P4lang. (n.d.). P4lang/tutorials. Retrieved July 24, 2020, from
https://github.com/p4lang/tutorials

[4] Nsg-Ethz. (n.d.). Nsg-ethz/p4-learning. Retrieved July 24, 2020, from
https://github.com/nsg-ethz/p4-learnin

https://github.com/p4lang/tutorials
https://github.com/nsg-ethz/p4-learning

